Day: May 22, 2024

CIOは企業で生成AIをどのように活用するか – Cyber Tech

生成AIの初期段階においても、すでに組織を変革し、IT戦略に大きな影響を与えている。言語モデル(LLM)はエンジニアリングの俊敏性を加速させる一方で、前例のない技術的負債の蓄積をもたらす可能性がある。「生成システムは生産されるコードの量を増加させる可能性が高く、それだけで技術的負債は増加する」とアナリスト会社Red Monkの創設者であるスティーブン・オグレディは言う。 しかし、これはCIOがAIの探索と導入を避ける理由にはならないと、SalesforceのEVP兼CIOであるフアン・ペレスは付け加える。彼はAIを適切なガバナンス、安全管理、メンテナンスとサポート、ライフサイクル管理を必要とする他のアプリケーションと同様に見ている。そして、AI製品の数が増加する中で、最適なモデルと基盤となるデータを選択することがAIの旅をサポートするために重要であると言う。 正しく導入されれば、生成AIはより高品質な製品を低コストで生産することができる。「AIが全体的なビジネスにプラスの影響を与えるかどうかの問題ではなく、それがどれだけ早く、どれだけ大きな影響を与えるかの問題である」とWalgreens Boots AllianceのCIOであるニール・サンプルは言う。しかし、彼は責任あるAI開発を実現するためには、政府の規制と企業のガバナンスの両方が必要であると指摘している。 生成AI:IT戦略の中心 機械学習モデルは、より迅速なIT反復を可能にする潜在能力を持っている。少なくとも、単調で反復的な作業の負担を自動化し、ソフトウェア開発者の帯域を解放して、より創造的で高度な作業に集中できるようにすることができると、コードテスティングプラットフォームSonarのCIOであるアンドレア・マラゴディは言う。「これらのチームを支援するために生成AIツールに投資することは、彼らの成長、生産性、そして一般的な満足度への投資である」と彼は言う。 生成AIは、特にJava、Python、C++などの確立されたプログラミング言語のコード生成において、開発を劇的に増加させると、Palo Alto NetworksのCIOであるミーラ・ラジャベルは付け加える。しかし、その力はそれだけにとどまらない。彼女は、コードテスティングを左にシフトし、単体テスト、デバッグ、ソフトウェア開発サイクルの早い段階でのミスの特定を支援することにおいてAIが重要な役割を果たすと見ている。「CIOとして、開発者に成功するための最良のツールを提供することが仕事の重要な要素であり、AIは効率を向上させることは間違いない」と彼女は言う。 AIはまた、部門全体の運用を大幅に進歩させる可能性がある。コード不要の自動化プラットフォーム会社WorkatoのCIOであるカーター・バスは、AIが今年の会社のIT戦略の中心にあると述べている。しかし、その利点はITの領域を超えて、カスタマーサポートの支援、生産性の向上、クロスチームのイノベーションの促進にも及ぶ。「CIOはビジネスを効率的に成長させることを課せられており、AIが今後その方法になる」と彼は言う。 したがって、最新のAIの波から利益を得るのはコード生成だけではない。クラウドベースのデータウェアハウジング会社SnowflakeのCIO兼CDOであるサニー・ベディによると、従業員の生産性が最大の影響を受けると予想される。彼は、すべての従業員が新入社員のオンボーディング体験をパーソナライズし、内部コミュニケーションを調整し、革新的なアイデアをプロトタイピングするのを支援するAICopilotと密接に連携する未来を予見している。LLMの即時利用可能な機能を活用することで、企業は検索、ドキュメント抽出、コンテンツ作成とレビュー、チャットボットなどの運用において第三者への依存を減らすことができるとも述べている。 技術的負債に対するAIの貢献 生成AIモデル自体ではなく、それらが実際にどのように適用されるかが、IT負債の生成において最大の決定要因になる。「どこでどのようにAIが組織に実装されるかを慎重に考える必要があり、今後の技術的負債の生成を避けるため」とサンプルは言い、既存の技術エコシステムにAIモデルを適用する場合、接続性の改訂や古いスタックを使用しながら生成AIモデルを統合する場合など、負債が累積するリスクが高いと付け加える。 一方で、適切に使用されれば、生成AIはレガシーアプリケーションを書き直し、タスクのバックログを自動化することで、古い技術的負債を排除するのに役立つ可能性がある。とはいえ、CIOは適切なクラウド環境と戦略なしに飛び込むべきではない。「組織が生成AIを早急に導入すると、既存の技術的負債が増加し続けるか、場合によっては慢性化する可能性がある」とHylandのCIOであるスティーブ・ワットは言う。そのため、彼は新しいAI駆動のイニシアチブが崩壊しないように、既存の技術的負債に対処する計画を立てることを推奨している。 初めは、企業がAIとLLMを試験的に使用することでIT負債が増加するかもしれない。しかし、バスは長期的にはLLMがそれを減少させると同意しているが、これはAIが変化する要件に動的に対応できるかどうかにかかっている。「ビジネスプロセスにAIを組み込むことで、プロセス変更に迅速に対応できるようになり、技術的負債が少なくなる」と彼は言う。 AI生成コードの品質評価 最近、AI生成コードの品質に関する疑問が提起されており、AIペアアシスタントの登場以来、コードの変更と再利用の増加が報告されている。Crimson Monkのオグレディによると、AIが生成するコードの品質は、使用するモデル、手元のユースケース、開発者のスキルセットなど多くの要因に依存する。「人間の開発者と同様に、人工システムも欠陥のあるコードを生成し続ける」と彼は言う。 例えば、SonarのマラゴディはMicrosoft Researchの最近の研究を引用しており、その研究では22のモデルを評価した結果、一般的にそのベンチマークでテストされると失敗することが示されている。これは、トレーニング設定に基本的な盲点があることを示唆している。人工アシスタントは機能的なコードを生成することができるが、効率性、安全性、保守性などの他のコンテキストを考慮することは少ない。また、コード規約への遵守も考慮されないと説明されている。 マラゴディにとっての結論は、改善の余地がまだ十分にあるということだ。「生成AIはより多くのコード行をより迅速に生成することができるが、品質が良くない場合、それは時間のかかる厄介な問題になる可能性がある」と彼は言う。彼はCIOやCTOに対し、AI生成コードがクリーンであることを確認するための必要な手段を講じるよう促している。「これには、一貫性があり、意図的で、適応可能であり、責任を持つことが含まれ、それが安全で、保守性が高く、信頼性があり、アクセス可能なソフトウェアにつながる」と彼は言う。 これらのモデルの根本にある品質の懸念は、コードの出力に悪影響を及ぼす可能性がある。生成AIは優れた技術的成果物を生み出す可能性を持っているが、データの品質、モデルのアーキテクチャ、トレーニング手順がすべて不十分な結果につながる可能性があると、クラウド技術インテリジェンスプラットフォームSnow SoftwareのCIOであるアラステア・プーリーは言う。「不適切にトレーニングされたモデルや予期しないエッジケースは、品質の低い出力をもたらし、運用リスクを引き起こし、システムの信頼性を損なう可能性がある」と彼は言う。これには、出力と品質の継続的なレビューと検証が必要だ。...
x