Claves para implantar una IA segura y eficaz – Cyber Tech

Niveles de riesgo

La escala del quitamiedos necesario para cualquier proyecto de IA en specific depende de varios factores: si la IA sirve a clientes externos o a usuarios internos, si afecta a áreas sensibles como la authorized, la sanitaria o la financiera, y el grado de libertad que se permite a la IA. Así, si la empresa de ciberseguridad Netskope tiene varios proyectos de IA generativa en marcha, que requieren diferentes tipos de controles, un cliente podría crear una mejor política de seguridad o aprender a utilizar una función concreta del producto.

“La primera versión la lanzamos con preguntas estructuradas”, explica James Robinson, CISO de la empresa. Como los clientes sólo podían elegir entre un conjunto determinado de preguntas, no había necesidad de validar los prompts para asegurarse de que eran sobre el tema, ya que los clientes no podían hacer preguntas fuera de tema. Pero con el tiempo, Netskope fue evolucionando hacia interacciones más libres y abiertas entre los usuarios y la IA.

“Eso es lo que hemos dado a conocer a algunos de los grupos de éxito de clientes, ya que hemos puesto más barreras y controles”, cube. Pero esta interfaz abierta en specific está disponible para los empleados internos, añade, no directamente para los clientes. “Se trata de personas que están un poco más cerca de nosotros y están vinculadas por acuerdos de empleados”.

Otra forma de reducir el riesgo es construir una barrera de una manera que sea complementaria al modelo que se está protegiendo, cube JJ López Murphy, jefe de ciencia de datos e IA en la compañía de desarrollo de software program Globant.

“Un quitamiedos debe ser ortogonal a lo que hace el LLM”, afirma. “Si estás usando un modelo OpenAI, no lo makes use of para comprobar si está dentro de los límites o no”. O tal vez ni siquiera utilizar un modelo de generador de texto en absoluto, pero algo de una familia diferente por completo, cube. “Entonces es mucho menos possible que algo pueda golpear a ambos”.

De cara al futuro

La naturaleza rápidamente cambiante de la IA generativa plantea un doble reto a las empresas. Por un lado, las nuevas capacidades de la inteligencia synthetic generativa requerirán nuevas barreras de seguridad y puede ser difícil mantenerse al día. Por otro, los proveedores de herramientas de protección también están innovando a gran velocidad. Por tanto, si invierte y crea un nuevo conjunto de barreras, es posible que haya un producto disponible antes de que termine su propio desarrollo. En ese caso, habrá invertido capital y valiosos conocimientos en un proyecto que se ha vuelto irrelevante incluso antes de estar terminado. Pero eso no significa que las empresas deban dar un paso atrás y esperar a que las tecnologías que necesitan estén disponibles, afirma Jason Rader, vicepresidente senior y director de Sistemas de Información de Perception, un integrador de soluciones.

Los primeros en adoptarlas se están haciendo con la cuota de mercado a lo grande”, afirma. “Estamos dispuestos a dejar de lado las horas hombre perdidas y el capital invertido porque una vez que tomas cuota de mercado, es más fácil aferrarse a ella”.

La IA generativa es una tecnología transformadora única en la vida, afirma. “Yo solía decir que dejáramos que los pioneros probaran estas cosas. Ahora, no creo que necesariamente tengamos que invertir en nuestro propio {hardware} y entrenar nuestros propios modelos”, añade. “Pero intentar adoptarlo en nuestro negocio ahora mismo, y tener la flexibilidad para ajustarlo, es una estrategia mucho mejor”.

Add a Comment

Your email address will not be published. Required fields are marked *

x